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Abstract 

At fertilization in mice and humans, the activation of the egg is caused by a series of 

repetitive Ca2+ oscillations which are initiated by phospholipase-C(zeta) that generates 

inositol-1-4-5-trisphophate (InsP3).  Ca2+ oscillations and egg activation can be triggered in 

mature mouse eggs by incubation in Sr2+ containing medium, but this does not appear to be 

effective in human eggs. Here we have investigated the reason for this apparent difference 

using mouse eggs, and human eggs that failed to fertilize after IVF or ICSI.  Mouse eggs 

incubated in Ca2+-free, Sr2+-containing medium immediately underwent Ca2+ oscillations but 

human eggs consistently failed to undergo Ca2+ oscillations in the same Sr2+ medium.  We 

tested the InsP3-receptor (IP3R) sensitivity directly by photo-release of caged InsP3 and 

found that mouse eggs were about 10 times more sensitive to InsP3 than human eggs.  

There were no major differences in the Ca2+ store content between mouse and human eggs. 

However, we found that the ATP concentration was consistently higher in mouse compared 

to human eggs.  When ATP levels were lowered in mouse eggs by incubation in pyruvate-

free medium, Sr2+ failed to cause Ca2+ oscillations. When pyruvate was added back to these 

eggs, the ATP levels increased and Ca2+ oscillations were induced.  This suggests that ATP 

modulates the ability of Sr2+ to stimulate IP3R-induced Ca2+ release in eggs. We suggest 

that human eggs may be unresponsive to Sr2+ medium because they have a lower level of 

cytosolic ATP.  

Key words:  oocyte/ calcium / intracellular ions/ cell signalling / assisted oocyte activation

Introduction

At fertilization in all mammals the sperm activates development of the metaphase II (MII) 

arrested oocyte (hereafter referred to as an egg) by triggering a prolonged series of transient 

increases in the intracellular free Ca2+ ion concentration (Kline and Kline 1992; Miyazaki 

2007). These are commonly referred to as  Ca2+ oscillations and are essential for the 
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completion of meiosis and cortical granule exocytosis (Miyazaki 2007; Sanders and Swann 

2016)   The sperm initiates these Ca2+ oscillations after gamete fusion by introducing the 

sperm specific protein phospholipase c zeta (PLCzeta)() into the egg cytoplasm where it 

generates inositol 1,4,5-trisphophate (InsP3) (Sanders and Swann 2016; Swann and Lai 

2016; Wakai et al. 2019). Ca2+ oscillations are also seen after ICSI in both mouse and 

human eggs (Miyazaki 2007; Hachem et al. 2017; Ferrer-Buitrago et al. 2018b; Nozawa et 

al. 2018).  Notably, PLC injection, either as cRNA or as recombinant protein, can trigger 

prolonged Ca2+ oscillations in mouse and human eggs as well as in eggs from other 

mammalian species (Rogers et al. 2004; Miyazaki 2007; Swann et al. 2012; Swann and Lai 

2016).  

There is a persistent incidence of cases of male factor infertility where failed fertilization 

occurs after ICSI (Ferrer-Buitrago et al. 2018b).   Many of these are due to failed egg 

(oocyte) activation, which is associated with a deficiency in PLC levels, or with specific 

mutations in PLC that lead to loss of its enzyme activity (Escoffier et al. 2016; Ferrer-

Buitrago et al. 2018b). These and other cases of failed fertilization can be rescued by 

artificial egg activation, but the efficiency of these protocols for rescuing fertilization is 

unclear. The most commonly used activating agents for human eggs are the ionophores 

A23187 and  ionomycin, but they both cause a single large Ca2+ increase that fails to mimic 

the Ca2+ oscillations seen at fertilization (Ferrer-Buitrago et al. 2018a; Swann 2018). Several 

studies suggest that triggering a single Ca2+ increase is less effective at activating 

development than causing multiple Ca2+ increases (Bos-Mikich et al. 1995; Ducibella et al. 

2002; Ferrer-Buitrago et al. 2018a).  In unfertilized mouse and rat eggs parthenogenetic egg 

activation is achieved with high success rates and reliability by incubation in (Ca2+ free) Sr2+ 

containing medium (Kline and Kline 1992; Bos-Mikich et al. 1995; Tomashov-Matar et al. 

2005). Sr2+ medium is more effective in rodent eggs because it causes prolonged Ca2+ 

oscillations that mimic to a considerable extent the oscillations seen at fertilization. Sr2+ 

medium is as effective as PLC in activating development of mouse eggs up to the 
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blastocyst stage (Yu et al. 2008; Ferrer-Buitrago et al. 2018a). However,  Sr2+ medium is not 

used in cow or pig eggs, despite the simplicity of its use and a clear need for an activation, 

because it has never been shown to cause Ca2+ oscillations after ICSI in these species 

(Ferrer-Buitrago et al. 2018a; Swann 2018).  Some studies have suggested that Sr2+ 

medium may be effective in activating human eggs (Yanagida et al. 2006; Fawzy et al. 

2018). However, exposing failed-to-fertilize eggs to Sr2+ containing medium has not been 

widely adopted as an activating agent in clinical IVF and it has never been shown that it can 

cause Ca2+ oscillations in human eggs (Rogers et al. 2004; Ferrer-Buitrago et al. 2018a; 

Swann 2018). One study has shown that Sr2+ does not cause Ca2+ oscillations in in vitro 

matured or freshly ovulated unfertilized human eggs (Lu et al. 2018), but the effects of Sr2+ 

on eggs that have failed to fertilize after IVF or ICSI have not been reported.  Sr2+ enters 

eggs via the TRPV3 receptor, which is expressed and functional in both mouse and human 

eggs, so there is no obvious reason why Sr2+ should not permeate mouse and human eggs 

(Lu et al. 2018; Swann 2018).  The difference between species may be related to a 

difference in intracellular release. 

PLC and Sr2+ both stimulate release of Ca2+ in eggs via the InsP3 receptor (IP3R) (Miyazaki 

2007; Wakai et al. 2019) . PLC generates regenerative cycles of InsP3 production that lead 

to IP3R-induced Ca2+ release (Sanders et al. 2018; Matsu-Ura et al. 2019). Sr2+ does not 

appear to generate InsP3 because, unlike fertilization and PLC, Sr2+-induced Ca2+ 

oscillations do not lead to IP3R downregulation (Brind et al. 2000; Jellerette et al. 2000). 

Instead it has  been shown that Sr2+ sensitizes the IP3R to InsP3-induced Ca2+ release in 

mouse eggs (Sanders et al. 2018).  Ca2+ release and oscillations in mouse eggs have been 

shown to be mediated via the type I IP3R, ITPR1 (Miyazaki 2007; Wakai et al. 2019). This is 

the predominant IP3R isoform found in mouse eggs and it is also detected in comparable 

amounts in mature MII human eggs (Brind et al. 2000; Jellerette et al. 2000; Goud et al. 

2002; Mann et al. 2010). IP3Rs are  found in clusters of the endoplasmic reticulum in both 

mouse and human eggs (Mehlmann et al. 1995; Mann et al. 2010). Ca2+ transients can be 
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elicited in mouse and human eggs by injection of InsP3, or by application of thimerosal, 

which stimulates IP3Rs (Homa and Swann 1994; Kline and Kline 1994; Herbert et al. 1995; 

Mann et al. 2010).  The concentration range of InsP3 or thimerosal used to stimulate Ca2+ 

release in mouse and human eggs overlaps. Consequently, whilst a difference in IP3Rs 

could underlie the species differences in mouse and human egg sensitivity to Sr2+, it is not 

clear whether any difference exists. The IP3R can be regulated by a range of factors such as 

phosphorylation and Ca2+ store content (Galione et al. 1993; Wakai et al. 2013; Wakai et al. 

2019). IP3Rs also have a specific cytosolic binding site for ATP which can modulate the 

channel and promote Ca2+ release (Foskett et al. 2007). It is not clear if any of these factors 

might modulate the IP3R sensitivity in mammalian eggs. 

In this study we show that human eggs that had failed to fertilize after IVF or ICSI do not 

display Ca2+ oscillations in response to Sr2+ medium that causes immediate Ca2+ oscillations 

in mouse eggs. We show that this lack of sensitivity to Sr2+ in human eggs is correlated with 

an order of magnitude difference in the sensitivity of InsP3 induced Ca2+ release.  We find 

that a medium that can reduce the level of ATP in mouse eggs makes them unresponsive to 

Sr2+ medium, in a way that is fully reversible.  Interestingly, there is a distinctive and 

consistent difference in the usual concentration of ATP between these two species, with 

mouse eggs having approximately twice the level of human eggs. This suggests that 

different levels of ATP could explain the differential sensitivity of the IP3R to Sr2+ between 

mouse and human eggs. 

Materials and Methods

Egg collection and preparation

Mouse eggs were collected from two different strains of mice. MF1 mice were used in early 

work and the CD1 strain in later studies because of the lack availability of MF1 mice within 

the UK.  The female MF1 mice (6-10 weeks old) were super-ovulated by serial i.p. injections 
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of preganat mare’s serum gonadotrophi and HCG, about 48 hours apart. The CD1 female 

mice (8-12 weeks old) were super-ovulated by serial i.p. injections of PG600, about 48 hours 

apart (all hormones from MSD Animal Health UK Ltd, Milton Keynes, UK). All procedures 

were carried out under a UK Home Office Project Licence held by KS. Mice were housed in 

conventional cages with environmental enrichment on a 12hour dark light cycle.  For either 

mouse strain, 15 hours after the second hormone injection the mice were culled by cervical 

dislocation. The oviducts were dissected and then the cumulus-oocyte masses were  

transferred to M2 medium (Sigma-Aldrich Co Ltd, Gillingham, UK) containing hyaluronidase 

(Campbell and Swann 2006; Yu et al. 2008). After the dispersion of cumulus cells by 

hyaluronidase, the eggs were washed and then maintained in M2 medium at 37oC under 

mineral oil until fluorescence recordings began.  Some mouse eggs were ‘aged’ in vitro by 

holding in M2 medium overnight and they were then used in experiments the next morning, 

at 24-26 hours after egg collection. In mouse egg experiments the ‘n’ numbers refer to the 

numbers of eggs, but every experiment was from at least two, and usually three, 

independent days with eggs collected from at least two mice per day. 

Human eggs that had failed to fertilize were obtained from patients attending the Wales 

Fertility Institute for IVF treatment. All patients providing such eggs gave written informed 

consent to the research. The project was approved by the South East Wales Ethics 

Committee 2 and is licenced by the Human Fertilisation and Embryology Authority (R0161). 

Patients donating eggs used in this study had a mean age of 33.59 years (±4.65 SD, n=51) 

and mean BMI of 24.27 kg/m2 (±3.16 SD). Unfertilized eggs were identified 16-18 hours after 

insemination or sperm injection and transferred from the clinic to the research laboratory in a 

heated transporter within 3 hours, so that experiments were initiated within 24 hours of egg 

recovery. Eggs from each patient were processed on a different experimental day that 

covered a period of up to 3 years. Only eggs that showed no sign of activation (neither 2nd 

polar bodies nor a pronucleus) from failed IVF or ICSI were used. Eggs that contained any 

obvious vacuoles in the cytoplasm were not used for research. The eggs were maintained in 
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the research laboratory in the M2 medium at 37oC under the same conditions as mouse 

eggs. 

Microinjection of eggs

Mouse or human eggs were microinjected using pressure pulses applied to the back of a 

micropipette that was inserted into the egg using electrical oscillation, as described in detail 

elsewhere (FitzHarris et al. 2018). It involves using a sharp tipped micropipette that is back 

filled with injection medium and inserted into the egg membrane by electrical oscillation on 

an amplifier connected to the injection solution and bath of medium. A pressure pulse is then 

applied to the back of the micropipette holder via a tube connected to a pressure pump. 

Most experiments involved microinjecting Oregon Green BAPTA dextran (Thermo-Fisher, 

UK), (OGBD: 0.5mM in the injection pipette in a KCl buffer) (Swann 2013). In some cases, 

Cal520 dextran (Stratech Scientific Ltd, Ely, UK) was used as an alternative Ca2+ dye that 

has a similar Ca2+ affinity and spectral properties to OGBD. In either case the dextran tag 

ensures that the dye is retained within the cytosolic compartment of the egg. For 

experiments on the IP3R sensitivity we microinjected eggs with a mixture of 0.5mM NPE-

Caged InsP3 (Thermo-Fisher, UK) plus 0.5mM OGBD. With both mouse and human eggs, 

the volume injected was about ~ ¼ diameter (~2% of the egg volume) in order to make the 

relative amount of caged InsP3 and OGBD similar for the differently sized human and mouse 

egg.

Medium for experimental runs 

Mouse or human eggs were tested for responses to Sr2+ in different media. Sr2+ containing 

HKSOM consisted of 95mM NaCl, 2.5mM KCl, 0.35mM KH2PO4, 0.2mM MgSO4, 4mM 

NaHCO3, 0.01mM EDTA, 0.2mM Na pyruvate, 10mM Na lactate, 1mM glutamine, 0.2mM 

glucose, 0.1mg/l phenol red and 20mM HEPES at pH 7.4 to which SrCl2 was added at the 

concentrations indicated.  In some cases a Mg2+ and Ca2+ free M2 was used that consisted 

of 10mM SrCl2 plus 94.7mM NaCl, 4.78mM KCl, 1.19mM KH2PO4, 4mM NaHCO3, 0.33mM 
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pyruvate, 23.3mM Na lactate, 5.56mM glucose, 1mg/l phenol red and 21mM Na HEPES at 

pH 7.4.  Other experiments used a HEPES-buffered saline solution (HS) that consisted of 

10mM SrCl2 plus 137mM NaCl, 5.5mM KCl, 1.2mM MgCl2, 5.6mM glucose, and 7.5mM Na 

HEPES at pH 7.4 (Igusa and Miyazaki 1983). All media were made up from chemicals and 

water purchased from Sigma-Aldrich UK Ltd and each was of embryo grade (where 

available) or else cell culture grade.  Serum albumin was omitted so that the eggs adhered 

to the coverslip of the chamber used for imaging. Reagents, such as thapsigargin or 

ionomycin (Sigma-Aldrich UK Ltd, Gillingham, UK), were made in stocks of 

dimethylsulphoxide at 1000 times the working concentrations, and stored at -20oC and 

diluted to the working concentration on the day of use. In cases where thapsigargin or 

ionmycin were added to the dish, the zona pellucidas for mouse eggs were removed prior to 

placement in the recording chamber by brief treatment with acid Tyrode’s solution (Sigma-

Aldrich UK Ltd, Ely, UK). In such cases 100l of a solution that was 10X the final 

concentration was pipetted into the dish of that already contained 900l of medium.

Live imaging of eggs 

Eggs were imaged in a 0.9ml drop of medium that was covered with mineral oil 

(Sigma-Aldrich UK, Ltd, Ely, UK) in a heated dish (35-37oC) on the stage of an 

epifluorescence microscope (either a Nikon Eclipse TE2000, Nikon TiU or a Zeiss Axiovert 

100).  Excitation light was at 490nm from a halogen lamp or LED (MonoLED, Cairn 

Research Ltd, Faversham, UK), and emission was at 520nm-550nm. The fluorescent light 

from eggs injected with Ca2+-sensitive dyes was sampled and imaged intermittently (every 

10s) with CCD cameras (Photometrics HQ2, or Retiga R3), or else we use continuous very 

low light imaging with an intensified CCD (ICCD) camera (Photek Ltd, St Leonards on Sea, 

UK).  Micromanager Software (https://micro-manager.org/) was used to control the shutters 

and collect data except for the ICCD, which used specific software (Photek Ltd, St Leonards 

on Sea, UK). The dyes used are single wavelength indicators and so the fluorescence traces 

for most experiments have been normalised by plotting the fluorescence as a ratio of each 
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point divided by the starting fluorescence value (hence F/F0), as described previously 

(Swann 2013).  The time between placing the eggs in the imaging dish and the start of 

recording was about 1-2 minutes. When Ca2+ oscillations began soon after recording had 

started, the F0 was taken from the apparent resting level of fluorescence between or at the 

end of Ca2+ oscillations. 

For InsP3 uncaging experiments, eggs were microinjected under red light and transferred 

within ~15 minutes to a heated microscope stage containing HKSOM medium (Sanders et 

al. 2018) . The eggs were then exposed to pulses of a UV light source that consisted of a 

metal Halide lamp with a fibre optic guide used to illuminate the dish containing the eggs.  

The metal Halide light path was filtered by a Schott UG11 filter to select UV light (Thorlabs 

Ltd, Ely, UK) and this was passed via computer-controlled shutters that enabled UV pulses 

to be delivered with durations from 100msec to 10 seconds. To enable rapid and continuous 

imaging of Ca2+ in these experiments, the OGBD fluorescent light was measured in single 

eggs continuously with a photomultiplier tube (ET Enterprises Ltd, Uxbridge, UK) with a 

current to voltage convertor sampled at 10Hz by an AD convertor connected to a computer. 

During application of the UV pulse there was a large flux of light that caused an artefactual 

signal from the photomultiplier tube and so this part of the recording was removed from the 

traces. 

ATP assays 

Whole cell calibrated ATP measurements were performed by adding single eggs to 

individual tubes containing 200L luciferase Promega Glo reagent (Promega Ltd, 

Southampton, UK). The light signals were taken as the steady state values. Light was 

recorded using a custom made luminometer consisting of a cooled photomultiplier tube in 

photon counting mode (ET Enterprises Ltd, Uxbridge, UK). Signals from single eggs were 

typically 1000 times the background count.  The signals were calibrated with a series of 

dilutions of ATP. In other experiments on live eggs the dynamic changes in (relative) 

cytosolic ATP levels were measured at the same time as cytosolic Ca2+ by injecting firefly 
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luciferase along with OGBD, as described previously (Campbell and Swann 2006). 

Luminescence signals from eggs were monitored with a Photek ICCD camera which was 

configured to switch between luminescence and fluorescence imaging modes every 10 

seconds, as described previously (Campbell and Swann 2006). 

Statistical analysis 

Data sets were analysed using ImageJ (https://imagej.nih.gov/ij/index.html) and SigmaPlot 

software (Systat Software Inc, Slough, UK).  The error bars used in all cases are SDs.   The 

‘n’ numbers refer to the number of eggs and were compiled from at least two experimental 

runs for mouse eggs and involved as many experimental runs as patients’ donations for 

human eggs. Statistical tests used and p value inequalities refer to Student ‘t’ tests when the 

data passed the Shapiro Wilk normality test, and the Mann-Whitney Rank Sum Test when 

data failed the Shapiro Wilk test.  A p value of less than 0.05 was considered to be 

significant. The effect size (Cohen’s d) for two sets of data was calculated by dividing the 

differences in the means by the pooled SDs.  

 Results

Ca2+ in mouse and human eggs in response Sr2+ medium 

In previous studies 10mM Sr2+ in Ca2+ free (HKSOM) medium was shown to cause Ca2+ 

oscillations and activate MF1 mouse eggs (Yu et al. 2008). Figure 1A shows that typical Ca2+ 

oscillations were detected with OGBD in nearly all MF1 mouse eggs. Mouse eggs from CD1 

also underwent sustained intracellular Ca2+ oscillations when placed in Ca2+ free medium 

(HKSOM) containing Sr2+ (Fig. 1B). With CD1 mouse eggs, medium containing 10mM Sr2+ 

caused Ca2+ oscillations in 4/10 eggs but most eggs underwent a sustained Ca2+ increase, 

which led to cell lysis within 2 hours. Consequently, with CD1 mouse eggs, we used medium 

containing 5mM Sr2+ and all 30 eggs underwent Ca2+ oscillations, and only 4 eggs lysed 

during the recording period.  With either strain of mouse egg, the first Ca2+ transients 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

olehr/advance-article/doi/10.1093/m
olehr/gaaa086/6064155 by guest on 11 January 2021

https://imagej.nih.gov/ij/index.html


typically started either as soon recording was initiated, or within ~10 minutes of the start of 

recording. The initial Ca2+ increase was usually long lasting compared to other transients 

and, in some cases, Ca2+ was at a high level for 1 hour before oscillations started.  All eggs 

that oscillated within 2 hours showed signs of activation in forming second polar bodies. 

Mouse eggs (CD1) that were aged in vitro (~24 hours) also showed Ca2+ increases in 5mM 

Sr2+ containing medium (Fig. 1 C and D). However, in aged eggs the Ca2+ increase was 

more variable. A large proportion of eggs (12/28) showed a very prolonged Ca2+ increase 

before oscillating (Fig. 1C), whilst others underwent a sustained Ca2+ increase (Fig. 1D) and 

in two cases egg lysis occurred during the recording. In a further six eggs (not shown) there 

were Ca2+ oscillations before a sustained Ca2+ rise. Eggs that underwent a sustained Ca2+ 

rise showed no signs of activation and those that oscillated displayed a fragmented 

appearance, which is consistent with previous studies on aged mouse oocytes (Gordo et al. 

2002).  These data show that there are some qualitative differences in the response to Sr2+ 

medium of mouse eggs from different strains and postovulatory ages. However, Ca2+ 

increases and oscillations are rapidly and consistently induced by 5 or 10mM in HKSOM 

medium.  The only mouse eggs that failed to undergo oscillation with Sr2+ medium showed a 

sustained rise in Ca2+ followed by lysis within the 2 hours of recording. 

When human eggs that had failed to fertilize were placed in 10mM Sr2+ HKSOM medium 

none of 28 eggs (from eight different patients) underwent Ca2+ oscillations for at least 3 

hours (Fig. 1E). When six of these human eggs (from two patients) were kept in Sr2+ medium 

for over 10 hours they also failed to display any Ca2+ oscillations. Most of these eggs were 

from failed ICSI treatments (24/28). We also tested the effect of using a 10mM Sr2+ medium 

that is both devoid of added Ca2+ or Mg2+ ions on eggs (Fig. 1F). This medium caused a 

sustained Ca2+ increase and cell lysis in CD-1 mouse eggs (data not shown).  However, 

when this medium was used for human eggs, we failed to observe any Ca2+ distinctive 

oscillations in 10 human eggs in up to 10 hours of recording. Out of 10 such eggs, eight 

showed no oscillations, but many eggs displayed a gradual rise in Ca2+ levels (e.g. Fig. 1F). 
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One egg showed a single Ca2+ spike after ~11 hours (Supplementary Fig. S1), but this egg 

failed to show signs of activation, and another showed some irregular Ca2+ oscillations 

followed by lysis. These data show that Sr2+ medium, that causes a sustained Ca2+ increase 

in mouse eggs, fails to cause any response in most human eggs within a timeframe that is 

useful for egg activation. Overall, the data suggest the in vitro aged human eggs are unable 

to undergo regular Ca2+ oscillations in response to the same Sr2+ medium that causes all 

mouse eggs to display a Ca2+ increase within minutes of exposure. 

InsP3 induced Ca2+ release in mouse and human eggs 

The lack of response to Sr2+ medium in human eggs could be related to differences in the 

sensitivity of the IP3R.  We tested the sensitivity of mouse eggs to InsP3 induced Ca2+ 

release by using UV light pulses to uncage InsP3 in the cytosol  (Sanders et al. 2018). Figure 

2A shows Ca2+ transients were triggered by pulses of UV light in caged InsP3 injected CD1 

mouse eggs.  A pulse duration of around 200msec consistently induced a small and 

transient Ca2+ increase, whereas pulse durations of 1 to 2 sec induced a maximal Ca2+ 

increase responses (Fig. 2A).  In contrast, the same protocol failed to induce a Ca2+ increase 

in human eggs when pulses of up to 2 seconds were applied (Fig. 2B).   In human eggs, UV 

pulses of around 5 to 10 seconds induced a large Ca2+ increase. Figure 2 shows the size of 

each OGBD fluorescence increase against the duration of the UV pulse.  We used the 

amplitudes of the fluorescence increases to estimate the theoretical duration of UV pulse 

required to cause a half-maximal response for each egg. Figure 2C shows that the half 

maximal response for human eggs was about 10 times greater than that for CD1 mouse 

eggs, with a clear separation of all data points (an effect size of 13, p value < 0.001). This 

difference between mouse and human eggs was not likely due to the in vitro ageing of 

human eggs because when we tested CD1 mouse eggs that had been aged in vitro for 24 

hours, we found that they also responded to UV pulses of much shorter duration than that of 

human eggs (Fig. 2C, p value <0.001). These data show that there is a marked difference in 

the sensitivity of mouse and human eggs to InsP3 induced Ca2+ release. 
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Ca2+ stores in mouse and human eggs 

The differences in the response of mouse and human eggs to both Sr2+ and InsP3 induced 

Ca2+ release implies that there is some factor differentially modulating IP3Rs. One possibility 

is a difference in the amount of Ca2+ stored in the egg endoplasmic reticulum between 

species. As above we injected eggs with OGBD and measured the Ca2+ release response to 

the additions of thapsigargin and ionomycin in Ca2+ free medium containing EGTA. 

Thapsigargin inhibits Ca2+ pumps and releases Ca2+ from the endoplasmic reticulum and 

then ionomycin releases Ca2+ from all stores.  Figure 3A and B shows Ca2+ increases in CD1 

mouse and human eggs, respectively, in response to thapsigagin and ionomycin. The 

responses to thapsigargin were smaller than those seen in response to ionomycin in both 

CD1 mouse and human eggs (Fig. 3C and D). However, with both thapsigargin and 

ionomycin, there was no significant difference in the amplitude of the Ca2+ increases 

between CD1 mouse (fresh or aged) and human eggs (all p values > 0.05). These data 

suggest that human eggs have a more variable Ca2+ store content than mouse eggs. 

However, there is a considerable overlap in the responses between mouse and human 

eggs, which makes it unlikely that differences in Ca2+ store content can provide an 

explanation for marked differences in response to Sr2+, and in IP3R sensitivity. 

The effects of pyruvate deprivation on Sr2+ induced Ca2+ oscillations

While carrying out experiments on the effects of divalent cations, we found that one type of 

Sr2+ medium failed to trigger Ca2+ oscillations in mouse eggs.  A HEPES-buffered saline 

medium has previously been used to study the mechanism of Ca2+ influx in hamster eggs 

(Igusa and Miyazaki 1983). It consists of similar salts to HKSOM and M2 medium and 

contains glucose, but no pyruvate or lactate. When MF1 mouse eggs were placed in this HS 

medium containing 10mM Sr2+ (with no added Ca2+) none of 32 eggs showed any Ca2+ 

oscillations or signs of activation (Fig. 4A). This contrasted with Ca2+ oscillations that were 

seen in all 25 eggs tested on the same experimental days using 10mM Sr2+ HKSOM medium 

(Fig. 4B).  We have previously shown that pyruvate deprivation leads to a decrease in ATP 
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levels, that is fully reversed by adding pyruvate (but not lactate) back to the medium 

(Dumollard et al. 2004; Dumollard et al. 2008). We added 0.2 mM pyruvate to the Sr2+ 

containing HS, before the start of recordings, and found that nearly all eggs (11/14) 

underwent Ca2+ oscillations and activated (Fig, 4C). This suggests that pyruvate alone is 

sufficient to restore sensitivity to Sr2+.  We then incubated mouse eggs in Sr2+ HS (with no 

pyruvate) from the start of the recording (Fig. 4D and E). As in Fig. 4A, there no Ca2+ 

oscillations, but when we added pyruvate back to the medium after 1 or after 2 hours of 

recording, we found that the addition of pyruvate causes most eggs to undergo Ca2+ 

oscillations. These data show that pyruvate is essential for Sr2+ induced Ca2+ oscillations in 

MF1 mouse eggs. This suggests that ATP levels could play a role in sensitizing mouse eggs 

to Sr2+ medium.  

We repeated these experiments with medium deficient in pyruvate on CD1 mouse eggs, but 

also measured the dynamics of ATP changes by monitoring the luminescence of firefly 

luciferase, which indicates ATP levels (Campbell and Swann 2006; Dumollard et al. 2008). 

In  initial studies we found that some CD1 mouse eggs underwent a Ca2+ increase in 

response to pyruvate-free 5mM Sr2+ medium and when this happened the Ca2+ level 

remained elevated (Dumollard et al. 2008).  Consequently, we pre-incubated CD1 mouse 

eggs in HKSOM without the substrates pyruvate, glucose, glutamine or lactate (but with 

Ca2+) for 30 mins before adding them to the same substrate-free HKSOM containing 5mM 

Sr2+.  Figure 5A shows an example of recordings of Ca2+ levels in CD1 mouse eggs in  

substrate-free medium containing 5mM Sr2+, with the luciferase trace indicating the relative 

level of ATP. There were no Ca2+ oscillations in any of the 18 eggs tested and the ATP level 

continued to decline. However, when pyruvate was added to the medium there was rapid 

increase in ATP levels and a series of Ca2+ oscillations was observed in all eggs.  These 

data support experiments on MF1 mouse eggs and show that a reduction in ATP leads to a 

reversible loss of sensitivity to Sr2+ induced Ca2+ oscillations. This implies that the ATP level 
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plays a significant role in determining whether an egg undergoes Ca2+ oscillations in 

response to Sr2+ medium.  

Differences in ATP levels between mouse and human eggs 

We measured the concentration of ATP in whole individual CD1 mouse eggs and human 

eggs using a standard luciferase luminescence assay.  The concentration of ATP was 

estimated after taking into account the different sizes of human eggs.   Figure 5B shows the 

distribution of values obtained from different mouse and human eggs.   The ATP level in 

CD1 mouse eggs is 3.32±0.47mM and in human eggs 1.43±0.37mM (mean ± SD).  There 

was a marked difference in the estimated ATP levels, with virtually no overlap in the total 

range of data and a separation of the mean values by more than 4 standard deviations (an 

effect size of 4.5, p value <0.001). There was no significant decline in ATP during in vitro 

ageing of mouse eggs, and mouse eggs aged for ~24 hours post collection still had a higher 

ATP than that of human eggs (Fig. 5B, p<0.001). These data suggest that the ATP content 

is significantly lower in human eggs compared to mouse eggs. 

Discussion 

We have found that human eggs that have failed to fertilize after IVF or ICSI (and hence they 

were aged in vitro) do not display Ca2+ oscillations or activate in response to Sr2+ medium 

that is otherwise effective at inducing immediate Ca2+ oscillations in mouse eggs.   

Mammalian eggs that are aged in vitro show a number of biochemical changes that are not 

seen in freshly ovulated eggs (Szpila et al. 2019). However, we found that in vitro aged 

mouse oocytes also reliably show Ca2+ increases in response to Sr2+ medium and so a lack 

of response in human eggs is unlikely to be caused by in vitro ageing itself. Moreover, we 

have previously found that in vitro aged human eggs from failed ICSI or IVF can undergo 

sustained Ca2+ oscillations in response to PLC injection (Rogers et al. 2004; Swann et al. 

2012) .  In addition, our data are consistent with a previous report that found Sr2+ was unable 
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to trigger Ca2+ oscillations in fresh or unfertilized human eggs (Lu et al. 2018).  In our study 

one human egg showed a single Ca2+ spike after more than 10 hours in 10mM Sr2+, showing 

that human eggs are capable of occasionally generating a Ca2+ spike in Sr2+ medium.  

However, even this response to Sr2+ was after >10 hours and the human eggs did not 

activate. It seems unlikely that Sr2+ would have caused Ca2+ oscillations in any of the 

previous clinical reports where it has been claimed to have been effective in egg activation 

(Yanagida et al. 2006; Fawzy et al. 2018), not least because these studies were based upon 

incubating human eggs in 10mM Sr2+ medium for 30mins or 1 hour, which is within a 

timeframe that we have never seen any Ca2+ increases.  A previous study of Ca2+ in human 

eggs suggested that the problem with Sr2+ medium is not a lack of Sr2+ influx into the egg 

because human eggs possess the same TRPV3 channels that mediate Sr2+ influx (Lu et al. 

2018).  Hence the fundamental issue with Sr2+ appears to be that the IP3R induced Ca2+ 

release in human eggs is substantially less sensitive to stimulation than that in mouse eggs. 

It is known that Sr2+ induced Ca2+ oscillations in mouse eggs require IP3Rs. The levels of 

IP3Rs could be lower in human eggs that have failed to fertilize after ICSI since a sperm will 

have been introduced into the cytoplasm. Downregulation of IP3Rs can occur after 

fertilization in mammalian eggs (Brind et al. 2000; Jellerette et al. 2000; Lee et al. 2010), but 

this only occurs in response to PLC-induced Ca2+ oscillations, which seems unlikely in 

human eggs that have failed to fertilize. In addition, the level of IP3Rs does not appear to be 

critical because  Sr2+ can cause Ca2+ oscillations in fertilized eggs (zygotes) that have 

downregulated the level of IP3Rs by severalfold in response to InsP3 production (Zhang et 

al. 2005). Sr2+ induced oscillations are associated with a marked increase in the sensitivity of 

mouse eggs to InsP3 (Sanders et al. 2018), which is consistent with studies of the type 1 

InsP3 receptor (ITPR1) cerebellar microsomes where Sr2+ directly promotes InsP3 induced 

Ca2+ release (Hannaert-Merah et al. 1995). Hence, Sr2+ stimulates the ITPR1 and we would 

expect that the difference between mouse and human eggs should be due to differences in 

its regulation. Previous studies have shown that InsP3 microinjection causes Ca2+ release in 
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mouse and human eggs at around 100nM (Kline and Kline 1994; Mann et al. 2010).  Our 

data, using UV pulses to uncage InsP3, show a very large difference in the threshold for 

initiating InsP3 induced Ca2+ release between mouse and human eggs. This difference 

provides a basis for understanding why Sr2+ is only able to trigger Ca2+ release in mouse 

eggs. It may also help explain why human PLC needs to be about 30 times more potent 

than mouse PLC in causing Ca2+ oscillations in eggs (Yu et al. 2008; Swann and Lai 2016). 

Studies using frogs eggs have shown that increasing the Ca2+ store content can sensitize 

IP3R induced Ca2+ release (Galione et al. 1993; Yamasaki-Mann and Parker 2011). It is 

unclear whether Ca2+ store loading affects IP3R sensitivity in mouse eggs (Wakai et al. 

2013). We assayed Ca2+ release in mouse and human eggs under the same conditions in 

response to ionomycin, and thapsigargin and ionomycin in Ca2+ free medium. The data 

suggest that the amount of Ca2+ releasable by thapsigargin and ionomycin is similar in 

mouse and human eggs.  

We discovered that a medium that was devoid of pyruvate was unable to support Sr2+ 

induced Ca2+ oscillations in mouse eggs. Since pyruvate-free medium leads to a reduction in 

ATP levels (Dumollard et al. 2004; Dumollard et al. 2008) and ATP is an allosteric modulator 

of IP3Rs (Foskett et al. 2007), we investigated whether ATP could begin to explain the 

difference in IP3R sensitivity.  We found a clear difference in ATP levels between mouse and 

human eggs with an approximate two-fold higher level in mouse compared to humans. 

There was little overlap in the total range of values; hence a large effect size.  There are 

many reports of the ATP content in mammalian eggs, but since different laboratories have 

used different protocols and assay kits to measure ATP, it is difficult to make comparison of 

absolute concentrations across the literature. Most reports cite ATP in pmol/egg rather than 

as a concentration so any differences may not have been noticed. However, if we take 

diameters of 72m for mouse and 120m for human eggs (Griffin et al. 2006), then previous 

data from the same laboratory suggest values of 3.5mM for mouse eggs and 1.9mM for 

human eggs (Van Blerkom et al. 1995; Van Blerkom et al. 2003). If we recalculate data from 
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another study using these diameters then it suggests ATP concentrations of 4.5mM and 

2.2mM for the mouse versus human egg, respectively (Chi et al. 1988). Hence, our data are 

consistent with previous studies.  It is not obvious why the level of ATP is lower in human 

eggs compared to mouse eggs. A two-fold lower cytosolic ATP concentration will have little 

effect on the free energy of hydrolysis since this depends upon the logarithm of the ratio of 

ATP to ADP and phosphate concentrations. Moreover, the effect of ATP upon the IP3R is 

allosteric and does not involve ATP hydrolysis (Foskett et al. 2007). Hence, Ca2+ release can 

potentially be modulated without affecting the ability to pump Ca2+ into stores.   

It was notable that we found that in vitro aged mouse eggs still responded to Sr2+ by showing 

oscillations shortly after placement in Sr2+ containing medium. The levels of ATP were not 

significantly altered in aged mouse oocytes, which supports our hypothesis that high ATP 

levels confer sensitivity to Sr2+. However, we did find that a significant proportion of aged 

mouse eggs failed to recover from the initial Sr2+ induced Ca2+ transients and they usually 

lysed before the end of the experiment.  This is consistent with previous reports that 

mitochondrial ATP production fails to increase in response to Ca2+ oscillations in aged 

mouse eggs (Szpila et al. 2019). Even aged mouse eggs that underwent Sr2+ induced Ca2+ 

oscillations failed to activate and instead showed a fragmented appearance. This is again 

consistent with previous reports showing that apoptosis is triggered in in vitro aged mouse 

eggs in response to sperm factor injection (Gordo et al. 2002).  The in vitro aged human 

eggs we used may have a range of defects, such as increased reactive oxygen species and 

DNA damage, and that could also make them susceptible to lysis or apoptosis.   However,  

loss of Ca2+ homeostasis and apoptosis may be less of an issue with human eggs than 

mouse eggs that are aged in vitro because, as noted above, ‘failed to fertilize’ human eggs 

can undergo prolonged Ca2+ oscillations in response to PLC and this can trigger 

development up to the blastocyst stage (Rogers et al. 2004).  It is noteworthy that the mouse 

eggs we use are from mice that were relatively young compared with the age of women (34 

years) whose eggs we used for our research. It is possible that female age affects the 
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responsiveness of eggs to Sr2+ because eggs from older mice have a reduced ATP level 

compared to those from younger mice (Simsek-Duran et al. 2013) . Interestingly, such  

maternally aged eggs also undergo fewer Ca2+ oscillations in response to Sr2+ medium 

compared to eggs from younger mice (Haverfield et al. 2016) . The difference in Sr2+ 

sensitivity of mouse eggs with maternal age is not due to differences in sensitivity to PLC or 

Ca2+ influx and our data now suggest that it could be due to a decline in ATP levels. 

It would have been useful to investigate the effect of ATP on IP3Rs in eggs by increasing 

cytosolic ATP levels in human eggs.  However, it is not clear how this can be achieved 

because  supplying more substrate, such as pyruvate, is not effective at increasing ATP  

(Dumollard et al. 2009). This is not surprising because mitochondrial ATP production is 

controlled by feedback mechanisms on many different enzymes (Brown 1992) . In contrast 

to increasing ATP in human eggs, it is possible to reduce ATP levels in mouse eggs by 

incubation in pyruvate-free medium (Dumollard et al. 2004). However, if such eggs with low 

ATP (presumably along with higher ADP and phosphate) undergo a transient Ca2+ increase 

they generally fail to recover to normal resting levels (Dumollard et al. 2008).  Hence, we 

could not test IP3R sensitivity directly using pyruvate-deficient mouse eggs.  However, with 

Sr2+ medium we could probe the ability of the IP3R to generate Ca2+ release without 

necessarily causing any Ca2+ transient.  When mouse eggs were ‘starved’ of pyruvate, in 

either of two types of medium, they consistently failed to show Ca2+ oscillations for 1 or 2 

hours in response to medium containing 5mM or 10mM Sr2+. This is unprecedented in our 

experience since all mouse eggs will normally undergo Ca2+ oscillations within minutes of 

placing in Sr2+ containing medium. Hence the starved mouse egg’s lack of response mimics 

the human egg.  The lack of response of mouse eggs in such medium was clearly reversed 

by the addition of pyruvate and this was associated with a rise in ATP levels, as reported 

previously (Dumollard et al. 2004; Dumollard et al. 2008). This suggests that ATP plays a 

causal role in IP3R sensitivity. The higher level of ATP provides a simple explanation for the 

return of Ca2+ oscillations since ATP (probably as ATP4-) is known to promote Ca2+ release 
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via the ITPR1, which is the predominant IP3R subtype found in mammalian eggs (Foskett et 

al. 2007).  It is possible that ATP4- produced by mitochondria has a localised action on the 

ITPR1 because the membranes of mitochondria and the endoplasmic reticulum in cells can 

be located c. 20-40 nm apart (Giacomello and Pellegrini 2016) .     

Parthenogenetic activation of mouse eggs routinely involves using Sr2+ medium, which is 

more effective than Ca2+ ionophores  (Bos-Mikich et al. 1995; Ferrer-Buitrago et al. 2018a). 

We previously used a mouse model of failed ICSI to show that Sr2+ medium was as effective 

as recombinant PLC in activating development to the blastocyst stage (Sanusi et al. 2015).  

Sr2+ medium is the most effective means of activating mouse eggs and it causes the highest 

rates of artificially induced pre-implantation development (Ferrer-Buitrago et al. 2018a).  Sr2+ 

induced mouse egg activation is simple, cost effective and easily modulated by changing 

concentrations and incubation times. Our work suggests that Sr2+ medium, as currently used 

in mouse eggs, will fail to activate human eggs because they have a lower ATP level.   

However, methods for promoting mitochondrial ATP production may enable human eggs to 

undergo Ca2+ oscillations and activate in response to Sr2+ medium. 
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 Figure legends 

Figure 1 Ca2+ measured in mouse or human eggs incubated in Sr2+ containing medium.

 (A) An example of Ca2+ oscillations (measured by Oregon Green BAPTA dextran (OGBD) 

fluorescence) in a MF1 mouse egg placed in 10mM Sr2+ medium, where 7.1±2.5 (mean ± 

SD) Ca2+ transients were seen in 18/20 eggs in 2 hours, with two other eggs showing a 

sustained Ca2+ increase followed by lysis. (B) An example of Ca2+ oscillations in a CD1 

mouse egg in response to 5mM Sr2+ medium, where 5.6±3.5 spikes were seen in 30 eggs in 

2 hours with another six eggs showing a sustained rise in Ca2+ and lysis.  In (C) is shown an 

example of 12/28 mouse eggs (CD1) that had been aged in vitro (~24 hours) that also 

underwent Ca2+ oscillations in 5mM Sr2+ containing medium. In (D) is shown another 

example of one of 10/28 aged mouse eggs that showed a sustained Ca2+ increase in 5mM 

Sr2+ medium during 2 hours of recording.  In (E) an OGBD trace is shown for a human egg 

placed in medium containing 10mM Sr2+ (one of 28 eggs). (F) A trace is shown where 
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Cal520 dextran was used to measure Ca2+ after the egg that was placed 10mM Sr2+ with no 

added Mg2+ (one of 10 eggs).

 F/F0: fluorescence presented as a ratio of each point divided by the starting fluorescence 

value 

Figure 2 InsP3 induced Ca2+ release in CD1 mouse and human eggs using caged InsP3. 

(A) A typical recording where pulses of UV light of 100msec (0.1sec) to 10 sec were applied 

to a CD1 mouse egg injected with OGBD and caged 1,4,5-trisphophate (InsP3).  Ca2+ 

increases are seen with all pulse durations over 200msec. (B)  A similar experiment except 

with a human egg.  In this case Ca2+ increases were only seen with UV pulses of greater 

than 2 sec. We plotted the amplitude of each Ca2+ response against UV pulse duration to 

estimate the pulse duration that would have given a half maximal increase. The mean 

(horizontal line) and SD for the half maximal response is shown in (C) for human eggs 

(n=14), fresh CD1 mouse eggs (n=13), and aged CD1 mouse eggs (n=8). (Note that the SD 

for fresh mouse eggs is small.) The differences between human eggs (*)compared to either 

fresh or aged mouse eggs are significantly different with p<0.001.  RFU is relative 

fluorescence units. 

Figure 3 Ca2+ release from eggs in response to thapsigargin and ionomycin.

The data shown are from CD1 mouse and human eggs in Ca2+ free HKSOM medium (with 

1mM EGTA added).  

(A) An example of one of 10 fresh mouse eggs responding to addition of 10M thapsigargin 

and then to 5M ionomycin and (B) is a similar experiment with one of eight human eggs. 

(C) and (D) show the mean and SDs of the amplitudes of Ca2+ transients in response to 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

olehr/advance-article/doi/10.1093/m
olehr/gaaa086/6064155 by guest on 11 January 2021



thapsigargin and then ionomycin in 10 mouse eggs, eight aged mouse eggs and eight 

human eggs. The difference in response amplitudes were not statistically significant 

(p>0.05).  

Figure 4   Ca2+ responses in MF1 mouse eggs in 10mM Sr2+ medium. 

(A) One of 32 mouse eggs that all failed to respond to 10mM Sr2+ in HEPES-buffered saline 

(HS) medium. (B) One of 25/25 eggs (on the same day) that responded to 10mM Sr2+ 

medium in HKSOM (and showed 7.04 ± 2.98 Ca2+ spikes in 2 hours.  (C) One of 11/14 

mouse eggs that showed Ca2+ oscillations in 10mM Sr2+ HS medium containing 0.2mM 

pyruvate from the start. In this case a mean of 5.64 ± 2.77 Ca2+ spikes were recorded in 90 

mins and three other eggs showed a Ca2+ rise that never recovered.  (D) An example of a 

mouse egg in 10mM Sr2+ in HS where pyruvate was added to the dish later to a final 

concentration of 0.2mM. In D, the pyruvate was added after ~1 hour and 14/16 eggs 

responded by showing Ca2+ oscillations, with a mean of 5.78 ± 1.63 spikes in 2 hours.  In 

(E), pyruvate was added after ~2 hours and Ca2+ oscillations where induced in 20/32 eggs, 

with a mean of 3.05 ± 1.23 spikes in 1 hour, with four eggs failing to respond, three lysing 

and five generating a sustained rise in Ca2+. 

Figure 5 ATP concentrations in mouse and human eggs. 

(A) A recording of Ca2+ and ATP (using firefly luciferase) in CD1 mouse eggs in HKSOM 

medium devoid of metabolites (hence eggs were starved). ATP is represented by the solid 

line and Ca2+ by the dotted line. In a total of 18 eggs there were no Ca2+ oscillations in the 

initial recording period, but after adding back 1 mM pyruvate after 30-40 mins all 18 eggs 

underwent Ca2+ oscillations with a frequency of 4.5 Ca2+ (±1.4) spikes in 1 hour after adding 

pyruvate. (B) The ATP levels in mouse versus human eggs and illustrates the difference 

(mean and SD) between CD1 mouse eggs (n=37), aged CD mouse eggs (n=34), and human 
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eggs (n=38). The difference in ATP between human eggs (*) and mouse eggs (fresh or 

aged) is statistically significant (p<0.001).  

Supplementary Figure S1 Ca2+ in human eggs in Sr2+ (Mg2+ free) medium measured 

with Cal520-Dex over 10 hours. 

Conditions are the same as those used for mouse eggs, as in Fig. 1F. A) shows the 

recording from four human eggs in the dish (y-axis in arbitrary units) and B) shows an 

expanded view of the one egg that showed a single Ca2+ spike after >10 hours.
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Fig. 3

A. Mouse egg B. Human egg 
F

/F
0

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Mouse

Aged
Mouse

Human

F
/F

0

1.0

1.5

2.0

2.5

3.0

Mouse

Aged
Mouse

Human

C. Thapsigargin  D. Ionomycin 

F/F
0

1.0

1.5

2.0

2.5

3.0

10 mins

thapsigargin

Ionomycin

F/F
0

1.0

1.5

2.0

2.5

3.0

15 mins

Ionomycin

Thapsigargin

D
ow

nloaded from
 https://academ

ic.oup.com
/m

olehr/advance-article/doi/10.1093/m
olehr/gaaa086/6064155 by guest on 11 January 2021



F/
F0

0.8

1.0

1.2

1.4

1.6

30 mins

F/F
0

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

1 hour

pyruvate

F/F
0

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

30 mins

F/
F0

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

30 mins

Fig. 4. 

A. Sr2+ in HS        B.  Sr2+ in HKSOM

C. Sr2+ in HS + pyruvate  D.  Sr2+ in HS then pyruvate  

E.  Sr2+ in HS then pyruvate 

F/
F0

0.8

1.0

1.2

1.4

1.6

1.8

1 hour

pyruvate

D
ow

nloaded from
 https://academ

ic.oup.com
/m

olehr/advance-article/doi/10.1093/m
olehr/gaaa086/6064155 by guest on 11 January 2021



A.  Starved mouse eggs then pyruvate

Fig. 5 
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