
BY HOW MUCH DOES THE PERFORMANCE OF AN OPTICAL 

FILTER CHANGE WITH ANGLE OF INCIDENCE? 

 

First of all, it's important to make clear that this analysis applies 

specifically to filters that operate by optical interference effects, which in 

practice most “precision” optical filters do.  For filters that just work by 

incorporation of wavelength-dependent light-absorbing molecules, such as 

in Schott glass, the performance is going to show little if any significant 

angular dependence, with light going through at more extreme angles just 

seeing an apparently greater filter thickness and hence correspondingly 

more absorbance.  But the perhaps unexpected finding is that the response 

of an interference filter shows, at least for small angles, relatively little 

angular dependence too, which is not what one might have expected.  So 

what is actually going on here? 

 

The reason why there is going to be some angular dependence for 

interference filters is because they consist of multiple layers of optical 

materials of differing refractive index and carefully designed thickness, 

and which have been deposited onto a glass substrate by a sputtering 

process  Internal reflections between these refractive index boundaries are 

going to be either constructive or destructive according to the wavelength 

of the light with respect to the thicknesses of all these layers (the number 

of which may be well into double figures), and this is inevitably going to 

depend on the angle at which the light goes through them.  The angular 

dependence issue is of potential importance in two basic types of situation.  

In the first, the filter is in a beam pathway that is “normal”, i.e. at 90 

degrees, to it, and which we will define as an angle of incidence θ of zero 

degrees, but the beam encompasses a range of angles around this.  In the 

second, the filter is at some other angle to the incoming beam, specifically 

in the case of a dichroic mirror, where the angular range is usually centred 

around 45 degrees.  As far as the filter performance itself is concerned, it 

doesn't matter whether it is optically in a collimated (“infinity”) space or in 

one which will generate an image, although angling a filter in an 

“imaging” space will introduce astigmatism.  However, that effect is due to 

the refractive index of the filter, hence is true for any other angled optical 

component, and is therefore a separate matter from the one being 

considered here.  This particular note, although also relevant to the 45 

degree case, is primarily intended to cover the case of a significant angular 

range around normal incidence.  So the question is, in practice how big can 
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θ be, before the performance of the filter is significantly affected? 

 

To understand what happens when the light is at some angle θ with respect 

to this normal condition, we need to resolve it into two vector components, 

as shown in the left part of the Figure.  One of these components, which 

we’ve labelled x, actually IS normal, so that it goes through at 90 degrees 

to the filter surface, and another, which we’ve labelled y that is parallel to 

the surface, so that it isn't actually “seen” by the filter at all.  What may not 

be immediately apparent is that since the path length of the normal 

component is somewhat shorter than the actual “angled” path length, its 

wavelength as seen by the filter is also effectively shorter.  If we normalise 

the angled path length to 1, then from Pythagoras we obtain the length of 

the “straight through” component x as sqrt(1-y2), where y is the length of 

the surface one.  Or if we know the angle θ with respect to the straight 

through component, then the length of that component, and hence the 

effective wavelength of the light, just varies with cosθ.  So to summarise, 

as the angle of incidence increases, the response of the filter shifts to 

shorter wavelengths, although relatively not by very much for small 

angles. 

 

 
 

 

 



But what happens at larger angles?  We've already mentioned the case of a 

dichroic mirror, designed such that some wavelengths (usually the shorter 

ones) are reflected, and others are transmitted.  Depending on their 

application, they may be designed for use either at normal or 45 degrees 

incidence, and a typical rule of thumb, that we learned years ago from a 

Comar catalogue, is that if you use such a component at 45 degree 

incidence when it was designed for use at normal incidence, its spectral 

response for mid optical wavelengths (say 500nm) typically shifts towards 

shorter wavelengths by around 35-50nm, hence to 450-465nm.  But wait a 

moment!  We might think that since the cosine of 45 degrees is around 0.7, 

the shift should be by this same factor, which would be to 350nm, so 

clearly something else is going on here. 

 

The answer is that we've used the wrong θ!  There are in fact TWO angles 

that we need to consider, which we'll term θ and θ'.  The reason is that we 

have to take into account the relative refractive index n of the filter 

material with respect to air, and as this link to the Semrock website shows, 

the effective value of n (bearing in mind that it is in practice going to be a 

mixture of different values) is relatively high, at typically around 2.  So, as 

the right part of the Figure shows, the beam angle going through the filter, 

which we are calling θ', is significantly less than the incident angle θ at the 

filter surface.  From Snell's law of refraction from an air interface, where 

the refractive index on the air side approximates very closely to 1, we 

obtain sinθ' = sinθ/n.  Since for relatively small angles, sinθ is close to 

linear with θ, then in such cases we can in practice say θ' = θ/n.  Hence if 

we further approximate n to 2, then we can say that the angle going 

through the filter (with respect to normal incidence) is only about half that 

at the filter surface. 

 

In practice this makes a BIG difference!  Although using this 

approximation at 45 degrees means that we are pushing the linearity of the 

sine function, if we nevertheless approximate the angle through the filter 

(or in this case dichroic mirror) as just 22.5 degrees, then the cosine of this 

is about 0.92, from which we would calculate an effective wavelength shift 

from 500nm to 462nm in this case – exactly in line with Comar's rule of 

thumb.  But perhaps more importantly, the improvement (in terms of the 

reduction in shift) from the effective n=1 assumption is significantly more 

than 2, and hence is more beneficial than we might have thought. 
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In fact, it's easy to show that for small angles, the improvement approaches 

a square-law one.  This comes directly from the relation that for any angle 

θ, sin2θ + cos2θ = 1, which is just the re-expression of the Pythagoras 

relation in this particular form, as the Figure also clearly shows.  Hence we 

can say that cosθ' = sqrt(1-sin2θ'), and since for small angles we can make 

the approximation that sinθ = θ, we can see that for small angles, the 

departure of cosθ from unity increases with the square of θ.  Hence if we 

halve θ in the filter as a result of having n=2, then we are actually four 

times better off! 

 

We can put all this into a single relation (while still estimating some 

equivalent overall value for n) by replacing sinθ' in the above equation by 

sinθ/n, and then expressing cosθ' in terms of the effective wavelength for a 

given angle of incidence, compared with that for normal incidence.  This 

gives (as others have done before us, so we are merely confirming here!) 

 

 λθ = λ0 sqrt[1 - (sinθ/n)2] 

 

The main potential pitfall here is that in practice the effective value of n 

tends to be somewhat polarisation-dependent.  As soon as we go away 

from normal incidence, then polarisation issues are potentially important.  

Instead of rays, we now need to think of wavefronts arriving at an angle θ 

with respect to normal.  The electric vectors of these wavefronts can be 

resolved into two components, namely the p component, which is parallel 

to the wavefront, and the s component, which is perpendicular to it.  This 

can be a particular issue for dichroic mirrors, where θ is likely to be around 

45 degrees, so any difference in n between the two polarisations is going to 

be correspondingly more important.  Such components therefore need to 

(or should!) be designed to minimise this difference, whereas no such 

equivalent care is likely to have been taken for filters designed for use at 

normal incidence, so perhaps rather more polarisation dependence may be 

observed in this case.  However, it is always likely to be a secondary effect 

here. 

 

Note also that the primary topic here is the use of filters at relatively small 

angles to normal incidence.  Once we get up to 45 degrees, for the dichroic 

mirror case, the approximations become much less accurate, and the 

angular effects become correspondingly more significant, to the extent that 

they can now be used to “tune” the filtering over a potentially useful range.  
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However, it remains the case that the range is still not as great as might 

have been expected.  In this case, by using the n=2 approximation if a 

more precise figure isn’t available, we can use the above equation to 

explore whether the effects of angular variation within a nominal 45 

degree beam are in practice going to be a problem or not.  But at the risk of 

making sweeping generalisations, one can nevertheless say that from how 

these components tend to be used in an optical system, it tends to be the 

case that the wavelength-splitting characteristics of a dichroic mirror aren’t 

as critical as the bandpass characteristics of the subsequent filtering.  Or 

perhaps we can say that the system can often be designed so as to make 

this the case, allowing us to live with the problem instead! 

 

But for filters used at nominally normal incidence, the “take home” 

message is that their angular dependence is a relatively forgiving one.  In 

fact this is often put to good use when a filter is used in an infinity space in 

an optical system.  The potential problem here is that the back reflection 

from the filter can be refocussed by what was the preceding collimating 

optics, to give rise to a ghost image superimposed on the original object.  

This issue is routinely solved by angling the filter by a few degrees (we 

use 5 degrees in our own filter cubes and related products), so that the 

reflection is off-axis and will miss the preceding optics, and hence cannot 

be refocussed.  In this case the effect really is negligible, as for n=2 we can 

calculate that the wavelength shift at 500nm is just less than 0.5nm.  

However, the point we are making here is that in practice the acceptable 

angular range is likely to be much greater.  A rule of thumb that we use at 

Cairn is that if θ is less than 15 degrees, giving a θ' of say less than 7.5 

degrees, then usually we don't need to worry too much.  For example, for n 

= 2 the wavelength shift for a design wavelength of 500nm would be only 

to 496nm, and here θ is likely to be an extreme rather than an average 

angle in the incident beam, so the average effect will be correspondingly 

less.  Our appreciation of all these matters is leading to our devising some 

potentially interesting optical arrangements, especially in respect of 

illumination, but that is going to be a story for another day! 

  
 


