Simultaneous Recording of Cortical SpikesUsing

GEVI Voltron and DaVinci-1K Camera

From

Many Cells in a Large Field

1.4 mm

- (A) CA1 parvalbumin neurons expressing Voltron imaged at 2kHz *in vivo* (Davinci 1k, CDSBIN2 mode)
- **(B)** Example fluorescence signals of simultaneously imaged cells

SFN2019 Poster 336.11

In vivo imaging of membrane potential dynamics in populations of hippocampal interneurons during network oscillation

Yi-Chieh Huang, Bei-Jung Lin, Tsai-Wen Chen, National Yang-Ming University, Taipei, Taiwan Reference: Abdelfattah et al (2019) *Science* 16 Aug 2019: Vol. 365, Issue 6454, pp. 699-704

ULTIMATE SOLUTION FOR HIGH SPEED ACTIVITY IMAGING

LIGHT SHEET MICROSCOPY * VSD & ION IMAGING * TIRF IMAGING * MOLECULE TRACKING

DaVinci-1K CMOS Camera

- >400fps NDR, 200fps CDS at 1024x1024
- >1280fps NDR, 640fps CDS at 512x512-bin2
- High Speed >2,000fps NDR, 1,000fps CDS at 512x320-bin2
 - 2500fps NDR, >1000fps CDS at 1024x180 & more
- On-chip Bin Unique true on-chip binning with 15Ke well depth and 65Ke at 2X2 binned.
- ◆ Low Noise . 2.8e- read noise without pixel correction
- High QE 65% without micro- lenses, 15um pixel with high MTF
- ◆ Monotonic Single A-D per channel, no dual-A-D stitching
- NDR Mode Double the maximum speed with over-sampling that offers significant advantages for post-analysis

AP from dorsal root ganglion neurons
(ASAP-1, 2000 fps, Single Trial)
Courtesy of Dr. Laurent Ferron and Professor Annette
Dolphin of UCL, UK

How do we achieve better uniformity and linearity, and higher speed than sCMOS?

- Off-chip CDS Correlated Double Sampling subtraction is performed after amplification and digitization.
- Single A-D converter <u>One A/D</u> per <u>channel</u> instead of <u>two A/Ds</u> per <u>column</u>, no stitching of two different A-D converters, therefore monotonic and more linear output.
- Large pixels & no micro-lenses for higher MTF better pixel QE.
- Unique NDR (Non-Destructive Read) mode more than doubles the readout speed.
- On-chip binning (2X horizontal, >64X vertical) significantly increases frame rate and well size.

Spontaneous Calcium Sparks from disassociated rabbit cardio myocytes (Frame Interval: 2 msec, Single Trial) Courtesy of Dr. Smith of U. Glasgow, UK

ULTIMATE SOLUTION FOR SUPER RESOLUTION MICROSCOPY

LIGHT SHEET MICROSCOPY * VSD & ION IMAGING * TIRF IMAGING * MOLECULE TRACKING

DaVinci-2K cmos camera

- ◆ High Speed >200fps NDR, 100fps CDS at 2048x2048
 - >400fps NDR, 200fps CDS at 2048x1024
 - 1000fps NDR, >400fps CDS at 2048x456
 - 2500fps NDR, >1000fps CDS at 2048x180 & more
- On-chip Bin Unique true on-chip binning
- ◆ Low Noise 2.8e- read noise without pixel correction
- ◆ High QE 65% without distorting micro-lenses (15um pixel)
- ◆ Monotonic Single A-D per channel, no dual-A-D stitching
- ◆ NDR Mode Double the maximum speed with over-sampling that offers significant advantages for post-analysis

Data courtesy of Sam Barnett and Dr. Ashley Cadby at Sheffield University UK, and Cairn Research.

How do we achieve better uniformity and linearity, and higher speed than sCMOS?

- Off-chip CDS Correlated Double Sampling subtraction is performed after amplification and digitization.
- Single A-D converter <u>One A/D</u> per <u>channel</u> instead of <u>two</u>
 <u>A/Ds</u> per <u>column</u>, no stitching of two different A-D converters,
 therefore monotonic and more linear output.
- No micro-lenses for uniform and flat image.
- Unique NDR (Non-Destructive Read) mode more than doubles the readout speed.

Advantages of NDR for STORM imaging at high frame rate:

- 1. 2x SNR, >3x events detected within the same time period.
- 2. Acquire 10,000 frames in 4 seconds rather than minutes.
- 3. Less laser suppression is needed, less bleaching.
- 4. Greatly reduced sample drift.

Why is it better than EMCCD?

- No square root of two shot noise penalty from Electron Multiplication (EM).
- No spurious charge artifact.
- · Much higher frame rate.

