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SUMMARY 

This document describes both the theory and practice of simultaneously acquiring multiple images 
focussed at different depths into a sample that is being viewed by a microscope. It can be achieved 
either by use of separate optical pathways going to multiple cameras, or by an image splitter, in 
which the individual optical pathways are then recombined and focussed onto different regions of 
the same camera. In both cases this is achieved by use of corrector lenses in one or more of the 
optical pathways, and the relation between corrector lens strength and focus depth change in the 
object for a particular microscope configuration is derived.   

The advantage of obtaining images at several different depths simultaneously is particularly 
obvious for moving objects, but in any case, it can increase the overall rate of data acquisition, 
which is always potentially useful. 

However, there is a little more to the subject than this, because changing the focus may also change 
the magnification of the individual images. While the images can in principle be rescaled to correct 
for this effect, it is clearly preferable to avoid the need to do so. Therefore, this document also 
describes how the optical relay system from the microscope to the camera(s) can be configured so as 
to maintain a constant magnification for all the images. This requires the corrector lenses to be at a 
location within the infinity space of the relay system that is conjugate with the back focal plane of 
the objective. Since that location depends on the microscope optics, it needs to be adjustable. The 
underlying principles are illustrated by diagrams in order to make them clearer.  

When simultaneously focussing at multiple depths, the creation of the individual optical pathways is 
generally going to be done in a wavelength-independent manner using beamsplitters, but the use of 
depth-correction optics may also be required when selecting on the basis of wavelength instead.  
This is because of possibly imperfect chromatic correction in the objective, which can be 
troublesome especially in the deep red and near infrared. The effect of such imperfect correction is 
that the objective focusses at different depths into the object at different wavelengths, so in this case 
the corrector lenses are used to compensate for it. 

This document also describes the location and characteristics of the image of the objective pupil 
that is generated within the optical relay system. Depending on the detailed characteristics of the 
microscope objective, the position of this image is at or close to the optimum location for the 
corrector lenses. It can be useful to know this location in any case, as the formation of the pupil 
image here tends to define a known minimum beam diameter at this point.  

The conclusions drawn here have all been verified by optical design software. A spreadsheet has 
been generated to allow the optimum position (no magnification shift) for the corrector lenses to be 
calculated, and it also calculates the relationship between a given focal length of corrector lens and a 
given degree of object focus shift. 

While copyright is claimed on this article, it can be freely downloaded from the Cairn website, and 
can be freely quoted from as long as appropriate acknowledgement is given. Individual researchers 
can also make whatever personal use they wish of the information given here, but we hereby make 
potential commercial users aware that the concept of a user-variable infinity space within an image 
relaying system in order to restore overall telecentricity is covered within Cairn's patent portfolio.  



THE OPTICAL PATHWAY 

In order to evaluate the necessary corrections for focussing at multiple depths into an object, we 
have to consider the entire optical pathway from the sample to the camera(s). To do this, we need to 
make some simplifications, in particular to model each component by an equivalent “thin lens”, 
where all the refraction takes place at a single surface. In practice the refraction by each component 
is going to take place over two or more surfaces that are separated by some distance, and the effect 
of this simplification is to make the equivalent optical distance through the component somewhat 
shorter than the actual physical one, as the thin lens approximation sets it to zero.   

The effects of this simplification are often overlooked, as they are usually too small to need to be 
taken into account during the initial design of an overall optical system, but they will be fully taken 
into account by later design optimisation by software, as this will correctly compute the refraction at 
each individual surface. We therefore tend to forget about it. 

But with microscope objectives it's a different story! They may contain perhaps ten or more 
elements, so to model such a component as a single refractive surface marks a very significant 
departure from the actual physical situation. The approximation is still fully valid as far as the 
subsequent optics are concerned, but it plays havoc with the real distances, as the following will 
make clear. 

The most important parameter for a lens is of course its focal length, and this is manifested as two 
physical distances from it, namely the front and rear principal focal planes. These are symmetrical 
and hence interchangeable, being defined by the direction of light transmission through the system.  
Light from a point somewhere on the front focal plane is refracted by the lens to form a collimated 
beam, whereas a collimated beam passing through the front focal plane is refracted towards a 
focussed point somewhere on the rear focal plane. The locations of these points on their respective 
focal planes is encoded by the angles of the corresponding collimated beams with respect to the 
optical axis. In mathematical terms the relationship between them is defined by a Fourier transform, 
but we don't need to involve ourselves with that here, as we can just stick to straightforward ray 
tracing.   

In the case of an infinity objective, the sample is therefore at the front focal plane of the equivalent 
thin lens, in order to form the collimated beam that is refocussed by the tube lens. In the analyses 
here these lenses will be referred to as L1 and L2 respectively. The situation with a “traditional” 
noninfinity objective is only slightly different, as in this case the sample is just slightly further away 
from the front focal plane of the equivalent single thin lens, so that an image is formed 160mm 
beyond it. However, to allow direct comparison with infinity objectives, we will here model such an 
objective as having the same two lenses L1 and L2, but with no separation between them. 

This all seems straightforward enough, until we ask where the back focal plane of L1 is, which it 
turns out is something we really need to know. The “usual” answer is that it's at the back aperture of 
the objective (generally known as the pupil plane), which itself is usually at or close to the 
objective's seating plane, and which is the surface that mates with the microscope turret when the 
objective is attached to it.  However, that isn't necessarily so, and here is why. Consider for example 
a Nikon 40x objective, with a parfocal distance (the distance between the sample and the objective 
seating plane) of 60mm. To get a 40x magnification with a 200mm tube lens, the objective must 
have a focal length of 200/40 = 5mm, so the equivalent thin lens is going to be that far away from 
the sample, or 55mm from the seating plane.  That would put its back focal plane 50mm from the 
seating plane, and hence deep into the objective. In practice the multilens nature of the objective 
means that it won't be that far in (because the equivalent optical length of the objective is shorter 
than its physical one), but on the other hand it would be quite a coincidence if it were to exactly 



coincide with the seating plane. 

Similarly, the pupil plane may not be exactly at the seating plane either, although in practice the 
correspondence between these two locations is likely to be much closer, and its location at the rear 
of the objective can often be directly observed. 

There is potential confusion here, in that some of the basic descriptions of a microscope tend to treat 
the back focal plane, the pupil plane and the seating plane as being synonymous, whereas in 
practice they may well differ somewhat.  Instead this identity is the “best guess” that one makes in 
the absence of any further information, as at least the seating plane location is known, so this is 
what we have done in the accompanying calculations spreadsheet. However, a more accurate 
position can enter by using an amended infinity distance within the microscope, as we'll see.  
Unfortunately, the back focal plane location doesn't seem to be specified by the manufacturers 
(why?), although it can be measured by a variety of methods that are described in the general 
literature. Generally though, it tends to be deeper into the objective for the higher magnification 
ones, and might even be beyond the seating plane for some lower magnification ones.  

We now turn to the sample focussing and magnification issues, for which there are two potential 
requirements to deal with. The first is to obtain two or more simultaneous images at slightly 
different depths into a sample, to form a “mini z stack”. This type of approach is particularly useful, 
if not essential, if the sample is still sufficiently alive to be actually moving (it does happen 
occasionally). Although microscope objectives are designed to work at just one distance into the 
sample, they can be refocussed to slightly different distances by changing the image distance 
appropriately. The extent to which this can be done before their point spread function significantly 
deteriorates depends on the type of the objective, with water immersion types being considerably 
better than oil ones on account of the better refractive index matching through to the sample, but 
even with oil it should be possible to achieve the few microns that may be all that is needed. 

The second is the apparently more prosaic one of simultaneously imaging two or more colours at 
the same depth into the sample. If microscope objectives were perfect, this wouldn't be a problem, 
but for reasons we're just about to explain, the problem of chromatic aberration becomes relatively 
more important at high magnifications. Lenses suffer from chromatic aberration because the 
refractive index of all optical glasses, and hence their focal length, is to some extent dependent on 
wavelength. By using multiple lenses of different glasses (of which the “achromatic doublet” is the 
simplest example), these effects can be reasonably well corrected, but there is a trade-off between 
the degree of correction and the wavelength range over which it is effective. An inevitable part of 
the trade-off is that the chromatic performance rapidly deteriorates outside the corrected range, 
which for microscopes has of course been optimised for visible wavelengths, whereas cameras can 
operate significantly into the near infrared. Any such variation in the focal length of the objective 
means that it is focussed at a different depth into the sample, so here one would want to correct 
wavelength-dependent images in order to bring them all back into the same focus. 

In order to appreciate the problem that underlies both these potential requirements, we have to 
appreciate the difference between lateral and longitudinal magnification. The lateral magnification 
is what it says on the objective, whereas the longitudinal magnification is the square of that. This 
means, that to take the case of a x40 noninfinity objective, which we can model as a single lens, the 
focus position at the image, for a point on the object that is just one micron deeper than the current 
in-focus position, we have to move the image sensor by not 40 microns, but by 1.6mm, to bring that 
point into focus!  And for 100x the required shift is a full 10mm....  

Although this may sound counterintuitive, it can be derived directly from the standard optical 
equation for focussing by a single lens 



1/u + 1/v = 1/f  

where u is the object distance, v is the image distance and f is the focal length of the lens. 

We also have the simple further relation for the (lateral) magnification m 

m = v/u 

Now let us assume that the object distance changes slightly, from u to u'. Then there must be some 
consequent change in the image distance, from v to v', such that 

1/u + 1/v = 1/u' + 1/v'  

Hence  

1/v' – 1/v = 1/u – 1/u' 

Rearranging this gives 

(v-v')/vv' = (u'-u)/uu'   

Since the differences between the original and revised distances are relatively small, then to a very 
good approximation we can write  

(v-v')/v2 = (u'-u)/u2.   

Hence  

(v-v') = v2/u2(u'-u) = m2(u'-u) 

TELECENTRICITY 

Such large shifts in v when v/u is high mean that moving the imaging sensor in order to maintain 
focus is going to significantly change the magnification, which in turn introduces the subject of 
telecentricity. If the optical system consists of just a single lens, the lateral magnification is the 
ratio of image distance to object distance as given above, but the longitudinal magnification effect 
means that at high magnifications, the change in image distance for a given change in object 
distance is also relatively high.  So, in the case of a traditional noninfinity microscope with a 100x 
objective, and where the image is viewed directly by a camera, then that 10mm image position shift 
for a 1um object shift in the example mentioned above would change the magnification from 100x 
to 
(160+10)/(1.6-0.001) = 106.32x to two figures, which is clearly quite significant! (Note though that 
the longitudinal magnification approximates to a square law only at the limit, although in practice 
the approximation is pretty good – according to the application of the standard optical equation, the 
new magnification for a 1um object shift is actually 106.74x)  



We can avoid the magnification change that a single lens  would yield, by making the system 
telecentric, which we do by introducing a second lens as shown in Figure 1A.  We can relate such a 
system directly to an infinity microscope, where L1 is the objective and L2 is the tube lens. In all 
the Figures the front and rear focus positions of each lens have been shown by red blobs attached to 
one edge of it. The marked edge alternates between successive lenses in order to prevent any 
potentially confusing ovelaps, and has no other significance. 

For the sake of easy illustration, we initially show the situation for a unity magnification system, 
where the lenses L1 and L2 have equal focal length. The object is placed at the front principal focus 
of L1.  Each point on the object generates a fan of rays that are collimated by L1, at an angle to the 
optical axis that corresponds to their position on the object. To understand what is going on, we 
consider the specific case of the chief ray, which is the one that leaves the extreme edge of the 
object in a direction parallel to the optical axis, and is shown in red in the Figures. This ray will pass 
through the rear focus of L1. If we place a second lens L2 such that its front focus coincides with 
the rear focus of L1, then L2 will refract it so that the ray is once again parallel to the optical axis.  
Since the extreme edge of the image must fall somewhere along this line, the magnification must be 
independent of the object and image positions, being given by the ratio of the focal lengths of the 
two lenses, which is unity in this case. 

Note though that the distance between the two lenses is a true infinity space only for the case where    
the object is at the front focus of L1, which places the image at the rear focus of L2.  Application of 
the standard lens equation to L1 and L2 in turn shows that as the object moves further towards L1, 
the image moves further away from L2 in proportion to the square of the L2/L1 magnification ratio, 
just as for the single-lens case, except that here the relation is an exact one rather than an 



approximation.  So in practice we still have the same image shift as for a single lens, but in this case 
without any change in the magnification. 

However, as the two lenses are moved closer together, the telecentricity is lost. This is shown both 
for an intermediate case as in Figure 1B, where L2 itself rather than its front focus is at the rear 
focus of L1, and for the “extreme” case of Figure 1C where L1 and L2 are coincident, 
corresponding to the familiar case of a single lens, which will have a focal length of half that of L1 
and L2 to achieve equivalent object and image distances.  Figure 1B is reasonably typical for an 
infinity microscope, whereas Figure 1C represents the noninfinity case.  In both cases the chief ray 
is no longer parallel to the optical axis, so the magnification will change if the object distance 
changes, with the effect in Figure 1C being that previously given for the single-lens case, and that in 
Figure 1B being somewhat intermediate. 

The reason why we can use the convenient unity-magnification case to illustrate this effect is shown 
in Figure 1D.  Here L1 has only one-quarter the focal length of L2, giving a magnification of four.  
However, as far as the image is concerned, we might just as well have been viewing an object at 
unity magnification, with an L1 of correspondingly longer focal length, placed correspondingly 
further away.  The important point here is that if the rear foci of the two L1 choices coincide as 
shown, the ray pathways through the subsequent optics are identical. Therefore we can consider the 
telecentricity of a system of any magnification with reference to its unity magnification equivalent.  
This in turn shows that for an optical system to be telecentric, L1 and L2 must be separated by the 
sum of their focal lengths. It also means that, at least from the point of view of telecentricity, we can 
take the magnification of the objective out of our analysis, and just deal with the much more 
convenient unity magnification case from here on. The objective magnification will of course be 
important for calculating the focus shifts, but that comes later.  

Although these Figures are primarily for illustration, they do also have a solid theoretical basis.  
They represent the standard paraxial approximation, where the true angles with respect to the 
optical axis are much smaller than they have been shown here for illustration. This approximation 
holds for as long as the sine of the angle (which determines the refraction according to Snell's Law) 
approximates to the angle itself when measured in radians. This is also true with respect to the 
tangent, which collectively means that the angular deviation of a ray by a lens is proportional to its 
distance from the optical axis. So, for the paraxial case (which means we have an aplanatic system, 
i.e. free from spherical aberration and coma), these Figures actually constitute geometric proofs.

These Figures also show some other rays in addition to the chief one, as their intersections with it 
define the image location. For systems that aren't fully telecentric, a ray that we can call the 
“imaging chief ray” is shown in purple. This is a ray that arrives at the microscope image parallel to 
the optical axis, and that has been extrapolated back to the object.  Some other rays are shown in 
yellow, and are generally drawn to exploit simple particular cases, for example the one where a ray 
crosses the optical axis at the lens itself, and hence isn't deviated at all. Finally, it turns out to be 
very instructive to to show one or more rays that leave from other points on the object, and are also 
initially parallel to the optical axis. These are shown in blue. 

So why aren't infinity microscopes made fully telecentric? There are basically two reasons for this.  
First, the infinity region adds an extra physical distance between the sample and its primary image, 
and hence generally to the eyepieces as well. That's not always going to be so convenient. For 
introducing epi-illumination or other optics into the infinity space, this region usually needs to be 
no more than 50-100mm, although optionally in some microscopes it can be made somewhat longer 
to allow a “double deck” configuration with stacked epi-illumination ports. However, that is less 
ideal for another reason. 



If one compares Figure 1A with Figure 1B, one can see that the tube lens L2 needs to be of larger 
diameter as the infinity space is made longer. The beam diameter through the infinity space 
therefore needs to be correspondingly larger for a given field of view, which introduces practical 
problems for the introduction of other optics within this space, and which can perhaps only be 
accommodated by reducing that field.     

RESTORING TELECENTRICITY 

The question therefore arises as to whether we can add further optics to convert these practical cases 
into fully telecentric ones, and the answer is yes. One can of course connect a camera directly to a 
port that accesses the rear focus of the tube lens, but in the image-splitting or multicamera cases that 
we're considering here, we're going to need an optical relay system in any case. This brings us to 
Figure 2, which introduces the further lenses L3 and L4, where L3 recollimates the microscope 
image and L4 refocusses it. In order to keep this Figure a manageable size, it has been rescaled so 
that L1 and L2 have half the focal lengths that were shown in Figure 1. Initially we'll consider a 
unity magnification relay of the same focal length as the tube lens, so L2, L3 and L4 will be 
identical. We'll then extend the analysis to cover other relay magnifications and focal lengths. 

In Figure 2A we follow a telecentric configuration with a telecentric relay, so the system is 
telecentric throughout. There is nothing remarkable here. However, in Figures 2B and 2C we have 



“stretched” the infinity space within the relay so that it is now greater than the sum of the focal 
lengths of L3 and L4. The easiest way to analyse this is with reference to the purple “imaging chief 
ray”, as this is the chief ray for the relay. It is therefore refracted through the rear focus of L3, which 
defines the angle in infinity space for all rays coming from the edge of the object. We can therefore 
extrapolate the direction of the original (red) chief ray to where it meets L3. Here we know that it 
will be refracted at an angle to make it parallel to the “new” (purple) chief ray, so now we can make 
that construction. Note that the relative “penalty” for the nontelecentric cases is that is that the beam 
diameter at L3 is going to be greater than for the telecentric case. However, this is the existing 
situation that we're stuck with, so we can (and must) take it into account in the design of the relay 
optics. 

At some point that original (red) chief ray will cross the optical axis, but since it wasn't parallel to it 
before L3, this will occur some way beyond the rear focus of that lens. The trick now is to move L4 
further away from the Figure 2A position, so that the crossing point coincides with the front focus 
of L4. This ray will now emerge from L4 parallel to the optical axis, thereby restoring the 
telecentricity. Comparison between the Figure 2B and Figure 2C situations shows that the greater 
the departure from telecentricity, the further out we must move L4. In fact, if the focal lengths of L2 
and L3 are the same, the distance by which the L1/L2 pair is “short”, or “overlapping” of being 
telecentric can be seen to define the distance by which we must “stretch” the L3/L4 pair.  This is 
shown by the equal lengths of the two distance markers. Note that it doesn't matter what the focal 
length of L4 is, just as long as its front focus is at this correct point, so we aren't restricted to a unity 
magnification relay.  We can refer to this point as the “telecenticity position”, and in view of its 
importance it has been marked by a blob on the optical axis.  Its real significance is that it is 
conjugate with the rear focus of the objective lens L1, which means that anything at that position is 
refocussed here. In fact we don't actually need the front focus of L4 to be in this conjugate position, 
for reasons that we'll go into later, but to keep things simple for now we'll assume that it is. 



But what if the focal lengths of L2 and L3 are different? This situation is shown in Figure 3, where  
we have halved the focal length of L3, and also that of L4 in order to retain unity magnification 
through the relay.  Here we have two effects. First, in the fully telecentric case of Figure 3A, the 
length of the relay has halved as expected, and a similar effect also applies to the equivalent 
nontelecentric case of Figures 3B and 3C, analogous to those of Figures 2B and 2C.  However, 
because of the reduced magnification, the ray angles in the infinity space of the relay, between L3 
and L4, are twice those in the equivalent Figure 2 versions for a given position on the object.  
Therefore, the distance by which we must “stretch” the infinity space for a given shortage in the 
infinity space of the microscope, is only half as great. What may not be so immediately obvious, 
although it is clearly shown in the Figures, is that the two effects combine, so that in this case 
halving the focal length of the relay has reduced the amount of infinity space “stretching” to restore 
telecentricity to just one quarter of its previous distance. Again, this is shown by the relative lengths 
of the two distance markers.  So more generally, we clearly have a square law effect here. 

Hence the rules for constructing a relay to give telecentric behaviour overall are as follows. First, 
measure the infinity distance in the microscope, and calculate the distance by which it is short of 
being telecentric. If one assumes (or is forced to assume!) that the rear focus of the objective is at its 
seating plane, then the distance by which we are short is given by the focal length of the tube lens 
minus the physical length of the infinity space. If we have a better estimate of the objective's rear 
focus, then we use the distance between that point and the tube lens instead. Then in the case where 
the focal length of the input lens (L3) of the relay is equal to that of the tube lens (L2), we increase 



the infinity distance in the relay by that amount from its true telecentric one. If these focal lengths 
are different, we multiply the correction distance by the square of the ratio of the focal length of L3 
divided by that of L2. 

To make the system telecentric overall for any given microscope, it is therefore going to be 
necessary to adjust the distance between the relay's collimating lens L3 and the corrector lens 
location, in order for that location to be conjugate with the rear focus of the objective, and the 
accompanying spreadsheet can calculate what this distance should be. Or it could be determined 
experimentally. There is nothing wrong with the experimental approach, especially in view of the 
potential uncertainty in the location of the rear focus of the objective L1.  Either way, our image 
splitters and camera adapters can be fitted with variable length “trombone” couplers to allow this 
condition to be achieved. It should be clear from the preceding analysis that the focal length of L3 
significantly affects this distance, so in principle that can be changed in order to bring the 
adjustment to within a convenient range, but at the expense of making a possibly undesirable 
change to the overall system magnification. However, for viewing purposes, the same overall 
magnification could be achieved by making the same relative change to the focal length of L4 
compared with that of L3.  

FOCUS SHIFTING 

So now we've made the optical system telecentric overall, but how do we shift the focus? The blue 
rays in the Figures provide the clue. These represent the chief ray from a subregion of the object, 
specifically a point half way between the edge of the object and the optical axis.  This ray crosses 
the optical axis at the same place as the “full-size” chief ray, namely the front focus of L4. By 
further plotting, this can be shown to be the case for on-axis rays leaving any point on the object.  
And by further extension of that, although rays leaving the object at other angles won't cross the 
optical axis at the front focus of L4, all the rays leaving from different points on the object at any 
given angle will converge to a common point somewhere on the front focal plane of L4 or more 
generally (and importantly), at a conjugate plane to the rear focus of L1. Therefore, the placement 
of a further lens at this point cannot affect the magnification of the system, although it must have 
some sort of focussing effect, because it is in what was a pure infinity space with respect to the 
object.  If we keep the distance from this lens to L4 the same (which in practice we will), then that 
space will remain a pure infinity one with respect to the object, so the focus shift will actually be on 
the object side, which is what we want.    

In fact, if the objective pupil is at the rear focus of L1, it will be reimaged here, and in practice the 
image will at least be somewhere nearby. It can be seen from the Figures that the tube lens L2 and 
the relay's collimating lens L3 provide a telecentric relay for the objective pupil, from which one 
can see that the magnification of the pupil image is given by the L3/L2 focal length ratio, regardless 
of the pupil's actual position. Although the pupil doesn't directly enter into the calculations, the 
accompanying spreadsheet optionally allows its size to be entered, so that the size of its image can 
be displayed if required, although the calculation is simple enough to do by hand! Knowing the 
position of the pupil image is useful in any case, as the formation of such an image defines the beam 
diameter there, where it is likely to be at a minimum. That is often useful to know. 

TELECENTRIC REFOCUSSING? 

We now have a system that is telecentric overall in object space, and we also know where in 
principle we can place corrector lenses within it in order to change the focus without affecting the 
magnification. However, before going further with the analysis it will be useful to consider the 
various practical configurations, as it turns out that the position and focal length of L4 are unlikely 
to matter. Why is this? 



We are going to be considering two alternative multifocussing possibilities. The easier one to 
understand is where we have two or more cameras.  In this case there will be one or more 
beamsplitters in the infinity space beyond the relay's collimating lens L3. There will then be a 
separate refocussing lens L4 for each pathway. The alternative is that of our image splitters, where 
the individual pathways are recombined to be refocussed by a common lens L4. This recombination 
occurs after the location of the corrector lenses, allowing a separate one to be used in each pathway, 
which of course the multicamera implementation provides by default. Please see our image splitter 
and camera adapter literature for further details and diagrams. 

The important general point is that once we get beyond the corrector lenses, we no longer need to 
be telecentric. That is to say, the front focus of L4 doesn't have to be conjugate with the relayed 
image of the rear focus of L1, which we previously named the “telecentric position”, and is where 
the corrector lenses need to go. Once a system has been set up, the distance between the camera(s) 
and L4 is going to be fixed, so in practice it isn't going to matter if any variation here affects the 
magnification. That's especially so for the image splitter case, where all channels share the same 
pathway and hence path length from L4 to the single camera. And even in the multicamera case, 
where the positions and/or focal lengths of the individual L4 lenses may differ between channels, 
the effects of the corrector lenses with respect to the equivalent shifts in object position will be the 
same. 

A better way of looking at this is to view each camera (or portion thereof in the image splitter case) 
and its associated L4 lens as a single unit. The camera/L4 combination is viewing a collimated 
beam of certain specific characteristics, and we choose the focal length of L4 with respect to L3 
such that it delivers the required field of view from the microscope image onto the camera sensor.  
There may well be a size mismatch here! In practice we therefore match the focal length of L4 
relative to that of L3 according to the size of the camera sensor, and we can make the distance 
between the corrector lenses and L4 pretty much whatever we like as long as the beam doesn't 
overfill L4. However, to keep things simple our Figures always show L4 as having the same focal 
length as L3, and positioned with its front focus conjugate with the rear focus of L1. To summarise, 
L4 affects the overall system magnification for viewing purposes only, rather like a microscope 
eyepiece. This is in contrast to the relay's collimating lens L3, which does directly affect the 
magnification, according to the ratio of its focal length relative to that of the tube lens L2 and other 
system parameters, as well as the location and effects of the corrector lenses. 

THE FOCUS-SHIFTING CALCULATIONS 

We have already shown that placing a further lens at a location that is conjugate with the rear focal 
plane of the objective cannot change the magnification of the relayed image, because the rays that 
leave from any position on the object at the same angle as each other will intersect somewhere on 
this conjugate plane (which is going to be at or near the image of the objective pupil). However, the 
additional lens will change the focus. Since the focus of the camera stays the same, this shift must 
be with respect to the object side of the relay, which is provided by the primary microscope image.   



What is going on here is best appreciated when both the microscope and the relay are individually 
telecentric, for which the situation shown in Figure 4 refers. Here we need concern ourselves only 
with the image position rather than the image height, as we know that the system is fully telecentric 
in the absence of the corrector lens, and the corrector lens can't affect the magnification of the 
image. For clarity we therefore just show a point image on the optical axis. 

Without any corrector lens, the primary microscope image will be at the front focus of L3, and from 
which L3 will generate a collimated beam. This is shown by the purple on-axis object and ray.  
However, once the corrector lens is introduced, the beam will only be fully collimated beyond it, so 
the additional focussing effect will move the effective focus of L3 closer to that lens, as shown by 
the green on-axis object and ray. 

We can calculate the focus shift from the corrector lens by noting that since it produces a collimated 
beam, the output beam from L3 must appear to have come from the front focus of the corrector lens, 
so we can extrapolate it back to that point as shown by the dotted yellow line. It forms a virtual 
object for L3, and we can now calculate the new effective object position for L3 as an image from 
this object, using the standard lens equation. 

One can replace any number of lenses in this type of situation by a single lens of equivalent focal 
length, as we already did for analysis of the objective. We can do so here by extrapolating the still-
diverging ray going into the corrector lens until it intersects with the collimated one that would have 
been there in the absence of the corrector lens. This is the location for the equivalent single lens, 
which has been shown dotted, and its focal length is given by the distance to the shifted image, and 
which therefore marks the front focus position. 

Clearly the extent of this focus-shifting effect will depend on both the relative size and position of 
the corrector lens, but Figure 4 shows the special case where the corrector lens is at the rear focus of 
L3. In this case the shift in the position of the equivalent single lens is equal to the shift in the object 
position (or that is to say, the object position that will generate a collimated beam beyond the 
corrector lens). Therefore, the system remains fully telecentric, and with no change in the 



magnification.  

However, in the practical situation, the rear focus of L3 has probably been displaced from the 
corrector lens position in order to restore the overall telecentricity of the system, so this may no 
longer seem to work. In fact it does, because we are fully telecentric at the corrector lens position, 
which means that the system is exactly equivalent to the rear focus of L3 being at that position.  
This is confirmed by optical design software. 

Clearly it's nicer to come up with a formula for the focus shift rather than having to calculate the 
effective object and image positions for L3 and the corrector lens in turn.  For this it's easier to run 
the system the other way round, so we start with light coming from infinity (from the right in Figure 
4), which first is focussed by the corrector lens, and then more strongly by L3. In the absence of L3, 
the corrector lens would focus the light at a distance fcorr from it. However, as shown in Figure 4, 
this forms a virtual object for L3, at a distance fcorr - fL3 from it. From the standard optical equation, 
the revised image distance v' from L3 (equivalent to the object distance in Figure 4), instead of just 
being given by fL3, is now given by 

1/v'L3 = 1/fL3 - 1/(fcorr - fL3) 

By multiplying through to give a common denominator, we can rewrite this as      

1/v'L3 = [fcorr - fL3 + fL3]/[fL3(fcorr - fL3)] 

Hence 

v'L3 = [fL3(fcorr – fL3)]/fcorr 

This compares with the image (in practice object) distance v for L3 without a corrector lens of just 
fL3.  The focus shift v' - v produced by the corrector lens is therefore 

v' - v =  fL3 {1 - [(fcorr – fL3)/fcorr]} 

Note the polarity! A convex corrector lens reduces the focus distance, which corresponds to an 
increase in the microscope's image distance, and hence a focus distance slightly less far into the 
sample. This equation also works for concave corrector lenes, which will therefore cause opposite 
shifts. That's well worth exploiting, as it doubles the focus range before the objective's point spread 
function is going to be significantly affected. In order to convert the focus shifts given by this 
calculation into equivalent shifts into the object, we then just apply the longitudinal magnification 
relation derived previously. The accompanying spreadsheet does all this automatically, but the 
overall calculation is easy enough to do by hand. There is even a rumour that in the predigital era, 
people could do this sort of calculation in their head, but we see no need to enter into such fanciful 
speculation here.  

But if you are uncomfortable with this derivation, there is no need to take it on trust! The focus 
controls on microscopes are generally calibrated, or if in doubt you can do the calibration yourself, 
by focussing onto objects of known different depths. You then see by how much you need to change 
the focus to compensate for the addition of any given corrector lens. In fact, we very strongly 
recommend that you do this anyway, as it is the definitive test. The whole point of this document is 
rather to explain how to change the focus without changing the magnification, for which the optical 
conditions described here must be satisfied. 

We can now think in practical terms. The focal lengths of the corrector lenses are likely to be 



relatively long, in the thousands of mm, so they are unlikely to contribute any signifcant 
aberrations. Standard singlet lenses will therefore work perfectly well. Again in practice one is 
likely to use a range of “stock” lenses of defined focal lengths, so the most straightforward 
approach is to choose a focal length for the corrector lens, calculate the resulting focus shift on the 
object side of L3, and then use the longitudinal magnification relationship to calculate the 
equivalent shift in the object position.   

To summarise, for a given corrector lens focal length, the other things we need to know are: 

The magnification of the objective 

The distance between its rear focal plane (use the seating plane if not exactly known) and 
the tube lens 

The focal length of the tube lens (L2) 

The focal length of the collimating lens in the relay optics (L3) 

We can also optionally enter the size of the objective pupil in order to calculate the size of its 
image 

Note that this simple calculation doesn't take the telecentricity of the system into account, but the 
effect of that on the focus shifts is relatively small. The reason that there is one at all is that as 
previously shown, the square-law relation for the longitudinal magnification is only absolutely true 
at the limit for a nontelecentric system, whereas it is exactly followed for a fully telecentric one.  
But it should also be borne in mind that the ultimate limit for the focus shifting is set by the 
inevitable deterioration in the objective's point spread function as it is asked to operate at object 
distances that increasingly differ from the one for which it has been designed. For a high-
magnification objective, the useable distance range may be just a few microns, but that can 
nevertheless be quite significant compared with its z axis resolution, so this is still a potentially very 
powerful technique. 

In practice therefore, the relations given here should be adequate for normal use. However, it is also 
possible in principle to calculate through the entire system on a lens-by-lens basis, but it will of 
course only be as accurate as the parameters that are entered into it. An alternative approach is to 
model the system using optical design software, which uses a “brute force” optimisation approach 
for obtaining the focus shifts. We have used this to verify the results given here. But again to repeat, 
the advantage of full telecentricity is that the images will all be of the same magnification as each 
other. Our image splitters and camera adapters support a variable-length coupling downstream of 
the collimating lens L3 to allow the all-important infinity distance within the relay to be correctly 
set. And in spite of all the technical detail here, there is nothing wrong in setting this distance by 
trial and error! 

SYSTEM SIZE ISSUES 

A potentially important practical issue is the overall size of the system, especially that of the relay.  
Since the microscope is likely to be less than fully telecentric, the length of the infinity region in the  
relay needs to be correspondingly greater. However that is not necessarily a problem in itself, as the 
length increase is with respect to the infinity space before the corrector lens position, where the 
beam diameter (defined by the size of the objective pupil image) will be the same as for a fully 
telecentric microscope. Instead the potential optical penalty is that in a less telecentric microscope 
the beam divergence going into the relay's collimating lens L3 is going to be greater, requiring it to 



be of larger diameter, as already shown in Figure 2. This means that it may contribute greater 
aberrations if not designed with sufficient care.  However, in the real world this is the situation with 
which we are confronted in the first place, so we must make the best of it. 

As shown in Figure 3, the relative length of the relay optics compared with the microscope optics 
can be reduced by using lenses of shorter focal length, and this also applies to the relative increase 
in the length of the infinity section needed to restore telecentrity. Although it reduces the required 
size of L3 in aperture terms, it also increases the relative field size compared with its focal length, 
so we may not be much if any better off in terms of an aberrations tradeoff. It is assumed that we 
would reduce the focal lengths of L3 and L4 together in order to retain unity magnification through 
the relay with respect to the size of the microscope image, but as previously noted we are free to 
change L4 to match the sensor size to the required field of view if (as may be the case) the sensor 
size is different from that of the microscope image.  

To make the system telecentric overall for any given microscope, it is therefore going to be 
necessary to adjust the distance between the relay's collimating lens L3 and the supplementary lens 
location, in order for that location to be conjugate with the rear focus of the objective. As previously 
noted, our image splitters and camera adapters can be fitted with “trombone” couplers to allow this 
condition to be achieved. It should be clear from the preceding analysis that the focal length of L3 
significantly affects this distance, so in principle it can be changed in order to bring the adjustment 
to within a convenient range, but at the expense of making a possibly undesirable change to the 
overall system magnification. However, for viewing purposes, the focal length of the camera 
focussing lens L4 could be changed to offset that. 

In general it should be possible to reach some reasonable compromise here, but this discussion 
would not be complete without covering an alternative possibility, which is that of introducing a 
field lens at the rear focus of the tube lens L2, namely at the primary microscope image. In practice 
we're likely to want to reduce the distance to the corrector lenses, in which case this lens is going to 
be a convex one. An ideal lens at this position cannot affect the image itself, or the magnification or 
position of the subsequent camera mage. However, it will clearly affect the relayed position of the 
rear focus of L1, and hence the supplementary lens position, so such a lens is potentially useful.  
Optical modelling confirms that there are no theoretical complications, but the calculation of the 
change in position is sufficiently straightforward to be done by standard optical analysis, rather than 
being gone into in any detail here. 

Although there may be no theoretical complications, there is a practical problem in having a lens 
exactly at an intermediate image position, since any dust (or worse) on the lens will also be 
perfectly refocussed onto the camera. It is therefore good practice to offset the position of this lens 
by some reasonable amount. Since it is going to be in the relay system, it will need to be on the L3 
side of the microscope image. Moving it away from the microscope image means that it will also 
affect the relaying of that image, but just as we did in Figure 4 we can treat L3 and the shifted field 
lens as a single lens of a correspondingly shorter focal length. Clearly a whole variety of 
intermediate effects can be achieved, culminating in just reducing the focal length of L3 while 
leaving the corrector lens position unchanged if this extra lens were moved all the way to the L3 
position. However, one cannot help but feel that this sort of approach to moving the corrector lens 
position is best avoided unless other reasons strongly favour it. Simpler solutions are always 
preferable! While we nevertheless recognise this possible approach, we do not explore it further 
here. 


